
  

 

 

Report for Multi-Level Deep Cascade Trees for Conversion Rate Prediction in 
Recommendation System 

Xiaobing Yu 
Miami University, USA 

Keywords: IdcTree, DNN, e-commerce, deep learning. 

Abstract: The study conducted by Wen et al. (2019) proposes a multi-Level Deep Cascade Trees 
Model (IdcTree) for conversion rate prediction in the recommendation system. The report 
introduces the background of recommendation systems used in the e-commerce industry and the 
proposed IdcTree for conversion rate prediction. The history and the challenges associated with 
DNN in previous work are carried out in the previous work of this study. The report also 
summarized in detail the main techniques and results of this study conducted by Wen et al. (2019) 
which establishes a basis for future research to investigate incorporating more features and other 
improvements that can improve efficiency in deep learning.  

1. Introduction  
Recommendation systems are used in the e-commerce industry to solve problems associated with 

information overloading. In this case, business owners assess the worth of a recommendation system 
based on the value it brings to the business. Some of the widely adopted measures in this context 
include click-through rates (CTR), conversion rates (CVR), sales or revenue, among others. Over the 
past few decades, deep learning has been employed in many application areas successfully and helped 
to overcome the obstacles associated with conventional models. However, deep learning is also 
associated with various deficiencies, such as the numerous hyper-parameters that require tuning, 
huge amounts of data are involved, and it also the powerful computational facilities are required to 
facilitate the training. These obstacles have created a need for a more effective and efficient 
alternative for deep learning.  

The proposed IdcTree for conversion rate prediction is aimed at improving the effectiveness and 
efficiency of recommender systems. Recommender systems play a significant role in the success of 
e-commerce. By improving the experiences and services offered to shoppers, e-commerce businesses 
can increase their sales and also establish profitable business relationships with their customers. 
Businesses can effectively monitor the performance of their recommender systems by monitoring 
CVR. The CVR is used to measure the rate at which website visitors take any desired action that the 
e-commerce website owner would like them to take. A good recommender system is associated with 
a higher CVR. A low CVR is an indication that the recommender system is not optimized enough, as 
people are not taking the business’ desired actions. Eliminating the obstacles associated with deep 
learning helps to improve the effectiveness associated with the recommender system.  

A recent study conducted by Zhou and Feng (2017) proposed gcForest, an alternative to deep 
neural networks (DNN) that generates a deep forest ensemble and utilizes a cascade structure for 
representation learning. The gcForest achieves higher performance compared to DNN, and is also 
associated with a few hyper-parameters. The findings of the study inspired Wen et al. (2019) to come 
up with their study, where they propose the IdcTree novel model and the EldcTree extension. These 
are decision tree ensemble methods that utilize the deep cascade structure and a feature representation 
based on cross-entropy. The innovation will be applicable in all types of recommender systems, 
including content-based filtering, collaborative filtering, and hybrid systems.  
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2. Previous Work 
Neural networks were first proposed in the 1940s, although the first application of digital neurons 

occurred in the 1980s, facilitated by the LeNet network utilized for the recognition of handwritten 
digits. The evolution of DNN models over the years has led to the development of different structures 
that facilitate various types of applications. These structures include the Multiple-Layer Perceptrons 
(MLP), Deep Belief Networks (DBN), and Convolutional Neural Networks (CNN).  

The study conducted by Zhou and Feng (2017) was the first approach to addressing the problems 
associated with DNN. The researchers proposed the gcForest as an alternative to DNN. This was the 
first auto-encoder to be developed based on tree ensemble learning. According to Zhou (2012), 
ensemble learning is a model that seeks to train multiple learners, and also combines to tackle the 
problem. Also referred to as forests, the tree ensemble methods are the most effective approaches for 
supervised learning. Examples of tree ensembles include the Random Forest introduced by Breiman 
(2001), and the gradient boosting decision trees (GBDT) (Friedman, 2001). According to Liu et al. 
(2008), tree ensembles for supervised learning exceed expectations through their success in other 
tasks such as anomaly detection by the isolation forest method. Wen et al. (2019) propose the IdcTree 
ensemble, which employs the GBDT models. Despite the challenges associated with DNN, there has 
been widespread adoption and applications of deep learning.  

3. Main Results 
The researchers conducted online and off-line evaluations and experiments aimed at determining 

the effectiveness of the proposed approach. The offline evaluation results show that the proposed 
method IdcTree achieved higher AUC value than DNN, GBDT, GBDT+LR, and other methods. The 
EldcTree proposed method was found to have better AUC than the IdcTree, which was explained by 
the notion of ensemble learning. The F-EldcTree was found to have the best results compared to the 
other competitive methods. The results were explained by the full utilization of weak and strong 
correlation figures, in combination with the notion of ensemble learning.  The online evaluation 
results revealed the effectiveness associated with level-by-level learning and the effectiveness of the 
F-EldcTree. In evaluating the effectiveness of level-by-level learning, the researchers implemented 
the IdcTree and the EldcTree methods with similar features from Naïve GBDT.  

The methods were deployed in the recommender system after which increment in CVR was 
monitored. The ldcTree was found to have a CVR increase of 4%, while the EldcTree gained over 7%. 
The difference in CVR gain was attributed to the more reliable feature representation capability of the 
EldcTree. The researchers also employed the F-EldcTree to the online environment. Results revealed 
that DNN and the gcForest had better results than Naïve GBDT. The proposed method had the best 
results, with a record 12% CVR increment. These results led to the conclusion that the proposed 
approach has a more robust feature representation ability, which is attributed to its deep cascade 
structure and the implementation of strong correlation features and weak correlation features in an 
adequate manner. The proposed feature learning methods, the ldcTree, and the extension EldcTree, 
are made up of a deep cascade structure, achieved through sequential stacking of multiple GBDT 
units. The proposed method was found to have the best performance in both the offline and online 
experiments. 

4. Techniques 
 The researchers proposed the IdcTree, which employs the deep cascade tree structure; based on 

inspirations from DNN representation learning characterized by level-by-level feature abstraction.  
The ldcTree is aimed at addressing the CVR prediction problem in the recommendation system. The 
structure of the ldcTree was made through sequential stacking of multiple GBDTs. The cross-entropy 
associated with every leaf node in the preceding GBDT was calculated to determine the input feature 
representation for the next unit. The study illustrates a two-level ldcTree characterized by three trees 
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and two trees in each level respectively. The following mathematical notations were used to define 
the cross-entropy for every leaf node: 
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Where, Sijk represents the cross-entropy of the k-th leaf node of the j-th tree at level i; Iijk 
represents the number of instances falling in the k-th leaf node of the j-th tree at level i; Lij  is the 
number of leaf nodes of the j-th tree at level I; δijk represents the split threshold for the k-th node of 
the j-th tree at level i; Fij represents the feature value at the j-th of the feature at level i; Ni represents 
the number of trees for the GBDT model at level i; hij (xn) is the predicted probability of the n-th 
instance xn on the j-th tree at the level i; and yn is a representation of the ground truth label of the n-th 
instance xn.  

The following two equations were also formulated:  
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An improved structure for the ldcTree based on the notion of ensemble learning was proposed and 

named, Ensemble ldcTree (EldcTree). The proposed EldcTree enhances the diversity associated with 
the model and also improves the representation ability. The researchers also use the Statistic Boosting 
Feature Importance as a measure of feature importance. This leads to the classification of features 
into Strong Correlation Features (SCF) and Weak Correlation Features (WCF).  

In the evaluation settings of the study, Wen et al. (2019), implement both the Area Under Curve 
(AUC) and F1score based on precision and recall as the evaluation metrics. Precision and recall were 
defined through the following equation: 
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The F1 score was defined as: 
The experiments involved a comparison of the proposed method with other closely related 

approaches. Naïve GBDT is used to refer to a single model of GBDT without the typical 
level-by-level learning. Another method for comparison was the GBDT + LR. The method’s feature 
representation is based on the GBDT model. The method is utilized in the prediction of CVR by 
Logistic Regression (LR). A DNN structure with three hidden layers and a prediction layer was 
designed. After which ReLU was implemented as the activation function for the hidden layers. 
gcForest by Zhou and Feng (2017), was the last comparison method integrated into the study. The 
researchers replaced the Forests found in the gcForest with GBDTs. The researchers also explore the 
performance differences between the proposed ldcTree, EldcTree, and F-EldcTree. 

5. Discussion 
 In the e-commerce domain, several decision attributes usually influence the preferences of the 

decision-maker. Under normal conditions, the decision-maker aims at maximizing their utility 
function.  

Apart from improving user experiences, the recommender system gets the web visitors to spend 
more time on the e-commerce platform and purchase more goods and services. CVR has been used 
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for a long time as a measure of recommender systems and other online marketing strategies. An 
improvement of CVR in this case implies that the recommender system is effective and optimized in 
the right manner. Recommender systems for modern e-commerce websites are required to be 
innovative in a way that they serve users with diversified content in regards to the recommended 
items.  Persistence in recommendations is also another key feature necessary for recommender 
systems. This involves re-showing recommendations to users based on their past activities alongside 
new recommended items. Effective recommender systems also have to consider the privacy of users, 
by ensuring that the process of building user profiles does not interfere with the privacy of data 
collected from users. There are other multiple factors such as product labelling, trust, robustness, and 
user demographics, among others, that recommender systems have to account for, to improve 
accuracy and effectiveness.  

6. Conclusion 
The study conducted by Wen et al. (2019) introduces an alternative learning method that is more 

effective and efficient than DNN. The researchers propose the ldcTree and its extension, the EldcTree. 
The proposed method is characterized by a deep cascade structure that is constructed through 
sequential stacking of several GBDT units. The implementation of a cross-entropy feature 
representation facilitates clear explanation and the desired distributed feature ability. Wen et al. (2019) 
found the proposed method F-EldcTree to have the best performance compared to the other models, 
in both the offline and the online experiments. When deployed in a recommender system for an 
e-commerce platform, the proposed methods achieved better results than other competing methods. A 
CVR increase of up to 12 percent was recorded. Unlike with other methods, the proposed F-EldcTree 
is associated with minimal training cost and are capable of supporting parallel implementation.  

The study conducted by Wen et al. (2019) adds up to the growing literature on deep learning. The 
study establishes a basis for future research to investigate on incorporating more features and other 
improvements that can improve efficiency in deep learning. Future researchers can also focus on how 
improvements made by the proposed F-EldcTree can be beneficial for a wide array of applications, 
particularly recommender systems. Fields such as social media recommendations and film viewing 
platforms may also be greatly impacted by algorithm changes. Researchers can also focus on 
exploring the end-to-end training method proposed by Wen et al. (2019), which is utilized in jointly 
feature learning and classification based on the deep cascade tree structure. The study by Wen et al. is 
groundbreaking in the field of deep learning and overall application of AI models.  
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